研究業績(論文)を発行順に4つのカテゴリーに分類して記載しています。
>2004年以前の論文はこちら

 
(ミトコンドリア複合体-Iの特異的化学修飾)

 
(コレラ菌Na+-輸送型NADH-ユビキノン酸化還元酵素のケミカルバイオロジー)

 
(ユビキノン類縁体の生物有機化学)

 
(その他の呼吸鎖酵素阻害剤)

 
(アセトゲニン類の合成と阻害機構)

 
(カルジオリピン類の合成と機能解明)







Otani, R., Masuya, T., Miyoshi H., and Murai M. (2024) Mitochondrial respiratory complex I can be inhibited via bypassing the ubiquinone-accessing tunnel, FEBS Lett. (doi.org/10.1002/1873-3468.14967)


Masuya, T., Uno, S., Murai, M., and Miyoshi, H. (2021) Pinpoint dual chemical cross-linking explores structural dynamics of the ubiquinone reaction site in mitochondrial complex I, Biochemistry 60, 813-824.


Tsuji, A., Akao, T., Masuya, T., Murai, M., and Miyoshi, H. (2020) IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism, J. Biol. Chem. 295, 7481-7491.


Banba, A., Tsuji, A., Kimura, H., Murai, M. and Miyoshi, H. (2019) Defining the mechanism of action of S1QELs, specific suppressors of superoxide production in the quinone-reaction site in mitochondrial complex I, J. Biol. Chem. 294, 6550-6561.


Masuya, T., Murai M., Ito, T., Aburaya, S., Aoki, W. and Miyoshi, H. (2017) Pinpoint chemical modification of the quinone-access channel of mitochondrial complex I via a two-step conjugation reaction, Biochemistry 56, 4279-4287.


Murai, M., Inaoka, H., Masuya, T., Aburaya, S., Aoki, W. and Miyoshi, H. (2016) Specific methylation of Asp160 (49 kDa subunit) located inside the quinone binding cavity of bovine mitochondrial complex I, Biochemistry 55, 3189-3197.


Masuya, T., Murai, M., Morisaka, H. and Miyoshi, H. (2014) Pinpoint chemical modification of Asp160 in the 49 kDa subunit of bovine mitochondrial complex I via a combination of ligand-directed tosyl chemistry and click chemistry, Biochemistry 53, 7816-7823.


Murai, M. and Miyoshi H. (2014) Chemical modifications of respiratory complex I for structural and functional studies, J. Bioenerg. Biomembr. 46, 313-321.


Masuya, T., Murai, M., Ifuku, K., Morisaka, H. and Miyoshi, H. (2014) Site-specific chemical labeling of mitochondrial respiratory complex I through ligand-directed tosylate chemistry, Biochemistry 53, 2307-2317.









Kishikawa, J., Ishikawa, M., Masuya, T., Murai, M., Kitazumi, Y., Butler, N. L., Kato, T., Barquera, B., and Miyoshi, H. (2022) Cryo-EM structures of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae, Nat. Commun. 13, 4082.


Ishikawa, M., Masuya, T., Kuroda, S., Uno, S., Butler, N. L., Foreman, S., Murai, M., Barquera, B., and Miyoshi, M. (2022) The side chain of ubiquinone plays a critical role in Na+ translocation by NADH-ubiquinone oxidoreductase from Vibrio cholerae, Biochim. Biophys. Acta (Bioenergetics) 1863, 148547.


Ishikawa, M., Masuya, T., Tanaka, H., Aoki, W., Hantman, N., Bulter, N. L., Mura, M., Barquera, B., and Miyoshi, H. (2021) Specific chemical modification explores dynamic structure of the NqrB subunit in Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae, Biochim. Biophys. Acta (Bioenergetics), 1862, 148432.


Masuya, T., Sano, Y., Tanaka, H., Butler, N. L., Ito, T., Tosaki, T., Morgan, J. E., Murai, M., Barquera, B., and Miyoshi, H. (2020) Inhibitors of a Na+-pumping NADH-ubiquinone oxidoreductase play multiple roles to block enzyme function, J. Biol. Chem. 295, 12739-12754.


Maynard, A., Butler, N. L., Ito, T., da Silva, A. J., Murai, M., Chen, T., Koffas, M. A. G., Miyoshi, H., and Barquera, B. (2019) The antibiotic korormicin A kills bacteria by producing reactive oxygen species, J. Bacteriol. 201, e00718-18.


Ito, T., Murai, M., Ninokura, S., Kitazumi, Y., Mezic, K. G., Cress, B. F., Koffas, M. A. G., Morgan, J. E., Barquera, B. and Miyoshi, H. (2017) Identification of the binding sites for ubiquinone and inhibitors in the Na+-pumping NADH-ubiquinone oxidoreductase of Vibrio cholerae by photoaffinity labeling, J. Biol. Chem. 292, 7727-7742.


Casutt, M. S., Nedielkov, R., Wendelspiess, S., Vossler, S., Gerken, U., Murai, M., Miyoshi, H., Moeller, H. M., and Steuber, J. (2011) Localization of ubiquinone-8 in the Na+ -pumping NADH-quinone oxidoreductase from
Vibrio cholerae, J. Biol. Chem. 286, 40075-40082.









Mizutani, M., Kuroda, S., Oku, M., Aoki, W., Masuya, T., Miyoshi, H., and Murai, M. (2024) Identification of proteins involved in intracellular ubiquinone trafficking in Saccharomyces cerevisiae using artificial ubiquinone probe, Biochim. Biophys. Acta (Bioenergetics) (doi.org/10.1016/j.bbabio.2024.149147).


Ikunishi, R., Otani, R., Masuya, T., Shinzawa-Itoh, K., Shiba, T., Murai, M., and Miyoshi, H. (2023) Respiratory complex I in mitochondrial membrane catalyzes oversized ubiquinones, J. Biol. Chem. 299, 105001.


Uno, S., Masuya, T., Zdorevskyi, O., Ikunishi, R., Shinzawa-Itoh, K., Lasham, J., Sharma, V., Murai, M., and Miyoshi, M. (2022) Diverse reaction behaviors of artificial ubiquinones in mitochondrial respiratory complex I, J. Biol. Chem. 298, 102075.


Uno, S., Masuya, T., Shinzawa-Itoh, K., Lasham, J., Haapanen, O., Shiba, T., Inaoka, D. K., Sharma, V., Murai, M., and Miyoshi, H. (2020) Oversized ubiquinones as molecular probes for structural dynamics of the ubiquinone reaction site in mitochondrial respiratory complex I, J. Biol. Chem. 295, 2449-2463.


Uno, S., Kimura, H., Murai, M. and Miyoshi, H. (2019) Exploring the quinone/inhibitor-binding pocket in mitochondrial respiratory complex I by chemical biology approaches, J. Biol. Chem. 294, 679-696.


Murai, M., Okuda, A., Yamamoto, T., Shinohara, Y. and Miyoshi, H. (2017) Synthetic ubiquinones specifically bind to mitochondrial voltage-dependent anion channel 1 (VDAC1) in Saccharomyces cerevisiae mitochondria, Biochemistry 56, 570-581.


Masuya, T., Okuda, K., Murai, M. and Miyoshi, H. (2016) Characterization of the reaction of decoupling ubiquinone with bovine mitochondrial respiratory complex I, Biosci. Biotechnol. Biochem. 80, 1464-1469.


Okuda, K., Murai, M., Aburaya, S., Aoki, W. and Miyoshi, H. (2016) Reduction of synthetic ubiquinone QT catalyzed by bovine mitochondrial complex I is decoupled from proton translocation, Biochemistry 55, 470-481.


Murai, M., Matsunobu, K., Kudo, S., Ifuku, K., Kawamukai, M. and Miyoshi, H. (2014) Identification of the binding site of quinone-head group in mitochondrial Coq10 by photoaffinity labeling, Biochemistry 53, 3995-4003.


Yang, Y., Yamashita, T., Nakamaru-Ogiso, E., Hashimoto, T., Murai, M., Igarashi, J., Miyoshi, H., Mori, N., Matsuno-Yagi, A., Yagi, T., Kosaka, H. (2011) Reaction mechanism of single subunit NADH-ubiquinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae: evidence for a ternary complex mechanism J. Biol. Chem. 286, 9287-9297.


Murai, M., Yamashita, T., Senoh, M., Mashimo, Y., Kataoka, M., Kosaka, H., Matsuno-Yagi, A., Yagi, T., and Miyoshi, H. (2010) Characterization of the ubiquinone binding site in alterative NADH-quinone oxidoreductase of Saccharomyces cerevisiae by photoaffinity labeling, Biochemistry 49, 2973-2980.


Matsumoto, Y., Murai, M., Fujita, D., Sakamoto, K., Miyoshi, H., Yoshida, M. and Mogi, T. (2006) Mass spectrometric analysis of the ubiquinol-binding site in cytochrome bd from Escherichia coli. J. Biol. Chem. 281, 1905-1912.







Tsuji, A., Masuya, T., Arichi N., Inuki, S., Murai, M., Miyoshi, H., and Ohno, H. (2023) Discovery of Bis-sulfonamides as Novel Inhibitors of Mitochondrial NADH-Quinone Oxidoreductase (Complex I), ACS Med. Chem. Lett. 14, 211-216.


Unten, Y., Murai, M., Koshitaka, T., Kitao, K., Shirai, O., Masuya, T., and Miyoshi, H. (2022) Comprehensive understanding of multiple actions of anticancer drug tamoxifen in isolated mitochondria, Biochim. Biophys. Acta (Bioenergetics) 1863, 148520.


Unten, Y., Murai, M., Sakai, K., Asami, Y., Yamamoto, T., Masuya, T., and Miyoshi, H. (2021) Natural tetramic acids elicit multiple inhibitory actions against mitochondrial machineries presiding over oxidative phosphorylation, Biosci. Biotechnol. Biochem. 85, 2368-2377.


Sakai, K., Unten, Y., Kimishima, A., Nonaka, K., Chinen, T., Sakai, K., Usui, T., Shiomi, K., Iwatsuki, M., Murai, M., Miyoshi, H., Asami, H., and Omura, S. (2021) Traminines A and B, produced by Fusarium concentricum, inhibit oxidative phosphorylation in Saccharomyces cerevisiae mitochondria, J. Ind. Microbiol. Biotechnol. 48, kuab051.


Tsukada, K, Shinki, S., Kaneko, A., Murakami, K., Irie, K., Murai, M., Miyoshi, H., Dan,S., Kawaji, K., Hayashi, H., Kodama, E. N., Hori, A., Salim, E., Kuraishi, T., Hirata, N., Kanda, Y., and Asai, T. (2020) Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones, Nat. Comm. 11, 1830.


Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M. L., Nikolaev, A., Meier-Credo, J., Melin, F., Miyoshi, H., Gennis, R. B., Sakamoto, J., Langer, J. D., Hellwig, P., Kuehlbrandt, W, and Michel, H. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science 366, 100-104.


Unten, Y., Murai, M., Yamamoto, T., Watanabe, A., Ichimaru, N., Aburaya, S., Aoki, W., Shinohara, Y. and Miyoshi, H. (2019) Pentenediol-type compounds specifically bind to voltage-dependent anion channel 1 in Saccharomyces cerevisiae mitochondria, Biochemistry 58, 1141-1154.


Aoyama, A., Murai, M., Ichimaru, N., Aburaya, S., Aoki, W. and Miyoshi, H. (2018) Epoxycyclohexenedione-type compounds are a new class of inhibitors of the bovine mitochondrial ADP/ATP carrier, Biochemistry 57, 1031-1044.


Murai, M. and Miyoshi, H. (2016) Current topics on inhibitors of respiratory complex I, Biochim. Biophys. Acta (Bioenergetics) 1857, 884-891.


Ito, T., Murai, M., Morisaka, H. and Miyoshi, H. (2015) Identification of the binding position of amilorides in the quinone binding pocket of mitochondrial Complex I, Biochemistry 54, 3677-3686.


Murai, M., Murakami, S., Ito, T., and Miyoshi, H. (2015) Amilorides bind to the quinone binding pocket of bovine mitochondrial complex I, Biochemistry 54, 2739-2746.


Murai, M., Habu, S., Murakami, S., Ito, T., and Miyoshi, H. (2015) Production of new amilorides as potent inhibitors of mitochondrial respiratory complex I, Biosci. Biotechnol. Biochem. 79, 1061-1066.


Shiraishi, Y., Murai, M., Sakiyama, N., Ifuku, K., and Miyoshi, H. (2012) Fenpyroximate binds to the interface between PSST and 49 kDa subunits in mitochondrial NADH-ubiquinone oxidoreductase, Biochemistry 51, 1953-1963.


Murai, M., Mashimo, Y., Hirst, J., and Miyoshi, H. (2011) Exploring interactions between the 49 kDa and ND1 subunits in mitochondrial NADH-ubiquinone oxidoreductase (complex I) by photoaffinity labeling, Biochemistry 50, 6901-6908.


Murai, M., Sekiguchi, K., Nishoka, T., and Miyoshi, H. (2009) Characterization of the inhibitor binding site in mitochondrial NADH-ubiquinone oxidoreductase by photoaffinity labeling using a quinazoline-type inhibitor, Biochemistry 48, 688-698.


Ichimaru, N., Murai, M., Kakutani, N., Kako, J., Ishihara, A., Nakagawa, Y., Nishioka, T., Yagi, T. and Miyoshi, H. (2008) Synthesis and characterization of new piperazine-type inhibitors for mitochondrial NADH-ubiquinone oxidoreductase (complex I), Biochemistry 47, 10816-10826.


Yoshida, T., Murai, M., Abe, M., Ichimaru, N., Harada, T., Nishioka, T. and Miyoshi, H. (2007) Crusial factors and mode of action of polyeneamides as inhibitors for mitochondrial NADH-ubiquinone oxidoreductase (Complex I). Biochemistry 46, 10365-10372.


Shiomi, K., Ui, H., Suzuki, H., Hatano, H., Nagamitsu, T., Takano, D., Miyadera, H., Yamashita, T., Kita, K., Miyoshi, H., Harder, A., Tomoda, H., Omura, S. (2005) A g-lactone form nafuredin, nafuredin-g, also inhibits helminth complex I. J. Antibiotics 58, 50-55.


Kao, M.-C., Bernardo, S. D., Nakamaru-Ogiso, E., Miyoshi, H., Matsuno-Yagi, A. and Yagi, T. (2005) Characterization of the membrane domain subunit NuoJ (ND6) of the NADH-quinone oxidoreductase from Escherichia coli by chromosomal manipulation. Biochemistry 44, 3562-3571.











Kojima, N., Abe, M., Suga, Y., Ohtsuki, K., Tanaka, T., Iwasaki, H., Yamashita, M., and Miyoshi, H. (2013) Critical role of a methyl group on the γ-lactone ring of annonaceous acetogenins in the potent inhibition of mitochondrial complex I, Bioorg. Med. Chem. Lett. 23, 1217-1219.


Nakanishi, S., Abe, M., Yamamoto, S., Murai, M., and Miyoshi, H. (2011) Bis-THF motif of acetogenin binds to the third matrix-side loop of ND1 subunit in mitochondrial NADH-ubiquinone oxidoreductase, Biochim. Biophys. Acta (Bioenergetics) 1807, 1170-1176.


Yamamoto, S., Abe, M., Nakanishi, S., Murai, M., and Miyoshi, H. (2011) Synthesis and characterization of photoaffinity probe of acetogenin, a strong inhibitor of mitochondrial complex I, Tetrahedron Lett. 52, 3090-3093.


Kakutani, N., Murai, M., Sakiyama, N., and Miyoshi, H. (2010) Exploring the binding site of Δlac-acetogenin in bovine heart mitochondrial NADH-ubiquinone oxidoreductase, Biochemistry 49, 4794-4803.


Sekiguchi, K. Murai, M., and Miyoshi, H. (2009) Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I, Biochim. Biophys. Acta (Bioenergetics) 1787, 1106-1111.


Abe, M., Kubo, A., Yamamoto, S., Hatoh, Y., Murai, M., Hattori, Y., Makabe, H., Nishioka, T., and Miyoshi, H. (2008) Dynamic function of the spacer region of acetogenins in the inhibition of bovine mitochondrial NADH-ubiquinone oxidoreductase (complex I), Biochemistry 47, 6260-6266.


Murai, M., Ishihara, A., Nishioka, T., Yagi, T. and Miyoshi, H. (2007) The ND1 subunit constructs inhibitor binding domain in bovine heart mitochondrial complex I. Biochemistry 46, 6409-6419


Ichimaru, N., Yoshinaga, N., Nishioka, T. and Miyoshi, H. (2007) Effect of stereochemistry of Δlac-acetogenins on the inhibition of mitochondrial complx I (NADH-ubiquinone oxidoreductae) Tetrahedron 63, 1127-1139


Murai, M., Ichimaru, N., Abe, M., Nishioka, T. and Miyoshi, H. (2006) Mode of inhibitory action of Δlac-acetogenins, a new class of inhibitors of bovine heart mitochondrial complex I. Biochemistry 45, 9778-9787


Fujita, D., Murai, M., Nishioka, T. and Miyoshi, H. (2006) Light control of mitochondrial complex I activity by a photoresponsive inhibitor. Biochemistry 45, 6581-6586


Murai, M., Ichimaru, N., Abe, M., Nishioka, T. and Miyoshi, H. (2006) Synthesis of photolabile Δlac-acetogenin for photoaffinity labeling for mitochondrial complex I. J. Pest. Sci. 31, 156-158


Ichimaru, N., Abe, M., Murai, M., Senoh, M., Nishioka, T. and Miyoshi, H. (2006) Function of alkyl side chains of Δlac-acetogenins in the inhibitory effect on mitochondrial complex I (NADH-ubiquinone oxidoreductase). Bioorg. Med. Chem. Lett. 16, 3555-3558


Abe, M., Murai, M., Ichimaru, N., Kenmochi, A., Yoshida, T., Kubo, A., Kimura, Y., Moroda, A., Makabe, H., Nishioka, T. and Miyoshi, H. (2005) Dynamic function of alkyl spacer of acetogenins in their inhibitory action with mitochondrial complex I (NADH-ubiquinone oxidoreductase). Biochemistry 44, 14898-14906


Fujita, D., Ichimaru, N., Abe, M., Murai, M., Hamada, T., Nishioka, T. and Miyoshi, H. (2005) Synthesis of non-THF analogs of acetogenin toward simplified mimics. Tetrahedron Lett. 46, 5775-5779


Makabe, H., Higuchi, M., Konno, H., Murai, M. and Miyoshi, H. (2005) Synthesis of (4R, 15R, 16R, 21S)- and (4R, 15S, 16S, 21S)-rollicosin. Tetrahedron Lett. 46, 4671-4675







Abe, M., Sawada, Y., Uno, S., Chigasaki, S.,Oku, Y., Sakai, Y. and Miyoshi, H. (2017) Role of acyl chain composition of phosphatidylcholine in tafazzin-mediated remodeling of cardiolipin in iiposomes, Biochemistry 56, 6268-6280.


Abe, M., Hasegawa, Y., Oku, M., Sawada, Y., Tanaka, E., Sakai, Y. and Miyoshi, H. (2016) Mechanism for remodeling of the acyl chain composition of cardiolipin catalyzed by Saccharomyces cerevisiae tafazzin, J. Biol. Chem. 291, 15491-15502 .


Abe, M., Nakano, M., Kosaka, A. and Miyoshi, H. (2015) Synthesis of photoreactive cardiolipins for a photoaffinity labeling study, Tetrahedron Lett. 56, 2258-2261.


Abe, M., Niibayashi, R., Koubori, S., Moriyama, I. and Miyoshi, H. (2011) Molecular mechanisms for induction of peroxidase activity of cytochrome c-cardiolipin complex, Biochemistry, 50, 8383-8391.


Abe, M., Kitsuda, S., Ohyama, S., Koubori, S., Murai, M. and Miyoshi, H. (2010) Concise procedure for synthesis of cardiolipins having different fatty acid combinations, Tetrahedron Lett., 51, 2071-2073.